Astrophysicists detect for the first time X-ray emission from a Wolf-Rayet nebula

Very massive stars during their lifetime may lose more than half their initial mass through winds. What is left is a hot core known as Wolf-Rayet (WR) star. The discarded outer layers that surround the star are called Wolf-Rayet nebula. Theoretical models predict that these WR nebulae should emit X-rays. Nevertheless, this X-ray emission has proved elusive. Now astrophysicists, using the XMM-Newton satellite, detected for the first time this X-ray emission from a Wolf-Rayet (WR) nebula.

How are Intermediate mass black holes formed?

Black holes are divided, based on their mass, into supermassive black holes (SMBHs) and stellar black holes. The mechanism that creates the later, is well understood however, the origin of SMBHs remains uncertain. One possible scenario that has been proposed is that supermassive black holes are formed from smaller intermediate mass black holes (IMBHs) that merge together. But then, how are IMBHs formed? A new study tries to shed light to this question.